Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Adv Drug Deliv Rev ; 208: 115294, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527624

RESUMO

Genodermatoses represent a large group of inherited skin disorders encompassing clinically-heterogeneous conditions that manifest in the skin and other organs. Depending on disease variant, associated clinical manifestations and secondary complications can severely impact patients' quality of life and currently available treatments are transient and not curative. Multiple emerging approaches using CRISPR-based technologies offer promising prospects for therapy. Here, we explore current advances and challenges related to gene editing in rare skin diseases, including different strategies tailored to mutation type and structural organization of the affected gene, considerations for in vivo and ex vivo applications, the critical issue of delivery into the skin, and immune aspects of therapy. Against the backdrop of a landmark FDA approval for the first re-dosable gene replacement therapy for a rare genetic skin disorder, gene editing approaches are inching closer to the clinics and the possibility of a local permanent cure for patients affected by these disorders.


Assuntos
Edição de Genes , Dermatopatias , Humanos , Sistemas CRISPR-Cas/genética , Qualidade de Vida , Pele , Dermatopatias/genética , Dermatopatias/terapia
2.
Br J Dermatol ; 190(1): 80-93, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37681509

RESUMO

BACKGROUND: Cutaneous squamous cell carcinoma (SCC) is the leading cause of death in patients with recessive dystrophic epidermolysis bullosa (RDEB). However, the survival time from first diagnosis differs between patients; some tumours spread particularly fast, while others may remain localized for years. As treatment options are limited, there is an urgent need for further insights into the pathomechanisms of RDEB tumours, to foster therapy development and support clinical decision-making. OBJECTIVES: To investigate differences in RDEB tumours of diverging aggressiveness at the molecular and phenotypic level, with a particular focus on epithelial-to-mesenchymal (EMT) transition states and thus microRNA-200b (miR-200b) as a regulator. METHODS: Primary RDEB-SCC keratinocyte lines were characterized with respect to their EMT state. For this purpose, cell morphology was classified and the expression of EMT markers analysed using immunofluorescence, flow cytometry, semi-quantitative reverse transcriptase polymerase chain reaction and Western blotting. The motility of RDEB-SCC cells was determined and conditioned medium of RDEB-SCC cells was used to treat endothelial cells in an angiogenesis assay. In addition, we mined previously generated microRNA (miRNA) profiling data to identify a candidate with potential therapeutic relevance and performed transient miRNA transfection studies to investigate the candidate's ability to reverse EMT characteristics. RESULTS: We observed high variability in EMT state in the RDEB-SCC cell lines, which correlated with in situ analysis of two available patient biopsies and respective clinical disease course. Furthermore, we identified miR-200b-3p to be downregulated in RDEB-SCCs, and the extent of deregulation significantly correlated with the EMT features of the various tumour lines. miR-200b-3p was reintroduced into RDEB-SCC cell lines with pronounced EMT features, which resulted in a significant increase in epithelial characteristics, including cell morphology, EMT marker expression, migration and angiogenic potential. CONCLUSIONS: RDEB-SCCs exist in different EMT states and the level of miR-200b is indicative of how far an RDEB-SCC has gone down the EMT path. Moreover, the reintroduction of miR-200b significantly reduced mesenchymal features.


Assuntos
Carcinoma de Células Escamosas , Epidermólise Bolhosa Distrófica , Transição Epitelial-Mesenquimal , MicroRNAs , Neoplasias Cutâneas , Humanos , Carcinoma de Células Escamosas/etiologia , Células Endoteliais/patologia , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/complicações , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , Neoplasias Cutâneas/patologia
3.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901755

RESUMO

Psoriasis is an inflammatory skin disease characterized by increased neo-vascularization, keratinocyte hyperproliferation, a pro-inflammatory cytokine milieu and immune cell infiltration. Diacerein is an anti-inflammatory drug, modulating immune cell functions, including expression and production of cytokines, in different inflammatory conditions. Therefore, we hypothesized that topical diacerein has beneficial effects on the course of psoriasis. The current study aimed to evaluate the effect of topical diacerein on imiquimod (IMQ)-induced psoriasis in C57BL/6 mice. Topical diacerein was observed to be safe without any adverse side effects in healthy or psoriatic animals. Our results demonstrated that diacerein significantly alleviated the psoriasiform-like skin inflammation over a 7-day period. Furthermore, diacerein significantly diminished the psoriasis-associated splenomegaly, indicating a systemic effect of the drug. Remarkably, we observed significantly reduced infiltration of CD11c+ dendritic cells (DCs) into the skin and spleen of psoriatic mice with diacerein treatment. As CD11c+ DCs play a pivotal role in psoriasis pathology, we consider diacerein to be a promising novel therapeutic candidate for psoriasis.


Assuntos
Dermatite , Psoríase , Animais , Camundongos , Baço/metabolismo , Camundongos Endogâmicos C57BL , Pele/metabolismo , Psoríase/patologia , Dermatite/metabolismo , Citocinas/metabolismo , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
4.
Front Med (Lausanne) ; 9: 976604, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091706

RESUMO

Background: Epidermolysis bullosa (EB), a severe genetic disorder characterized by blister formation in skin, is caused by mutations in genes encoding dermal-epidermal junction proteins that function to hold the skin layers together. CRISPR/Cas9-induced homology-directed repair (HDR) represents a promising tool for editing causal mutations in COL17A1 in the treatment of junctional epidermolysis bullosa (JEB). Methods: In this study, we treated primary type XVII collagen (C17)-deficient JEB keratinocytes with either Cas9 nuclease or nickase (Cas9n) ribonucleoproteins (RNP) and a single-stranded oligonucleotide (ssODN) HDR template in order to correct a causal pathogenic frameshift mutation within the COL17A1 gene. Results: As analyzed by next-generation sequencing of RNP-nucleofected keratinocytes, we observed an HDR efficiency of ∼38% when cells were treated with the high-fidelity Cas9 nuclease, a mutation-specific sgRNA, and an ssODN template. The combined induction of end-joining repair and HDR-mediated pathways resulted in a C17 restoration efficiency of up to 60% as assessed by flow cytometry. Furthermore, corrected JEB keratinocytes showed a significantly increased adhesive strength to laminin-332 and an accurate deposition of C17 along the basement membrane zone (BMZ) upon differentiation into skin equivalents. Conclusion: Here we present a gene editing approach capable of reducing end joining-generated repair products while increasing the level of seamless HDR-mediated gene repair outcomes, thereby providing a promising CRISPR/Cas9-based gene editing approach for JEB.

5.
Int J Mol Sci ; 23(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35163654

RESUMO

Mutations within the COL7A1 gene underlie the inherited recessive subtype of the blistering skin disease dystrophic epidermolysis bullosa (RDEB). Although gene replacement approaches for genodermatoses are clinically advanced, their implementation for RDEB is challenging and requires endogenous regulation of transgene expression. Thus, we are using spliceosome-mediated RNA trans-splicing (SMaRT) to repair mutations in COL7A1 at the mRNA level. Here, we demonstrate the capability of a COL7A1-specific RNA trans-splicing molecule (RTM), initially selected using a fluorescence-based screening procedure, to accurately replace COL7A1 exons 1 to 64 in an endogenous setting. Retroviral RTM transduction into patient-derived, immortalized keratinocytes resulted in an increase in wild-type transcript and protein levels, respectively. Furthermore, we revealed accurate deposition of recovered type VII collagen protein within the basement membrane zone of expanded skin equivalents using immunofluorescence staining. In summary, we showed for the first time the potential of endogenous 5' trans-splicing to correct pathogenic mutations within the COL7A1 gene. Therefore, we consider 5' RNA trans-splicing a suitable tool to beneficially modulate the RDEB-phenotype, thus targeting an urgent need of this patient population.


Assuntos
Colágeno Tipo VII/genética , Epidermólise Bolhosa/genética , RNA/metabolismo , Humanos , Splicing de RNA , Trans-Splicing
6.
Int J Mol Sci ; 23(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35008999

RESUMO

Conventional anti-cancer therapies based on chemo- and/or radiotherapy represent highly effective means to kill cancer cells but lack tumor specificity and, therefore, result in a wide range of iatrogenic effects. A promising approach to overcome this obstacle is spliceosome-mediated RNA trans-splicing (SMaRT), which can be leveraged to target tumor cells while leaving normal cells unharmed. Notably, a previously established RNA trans-splicing molecule (RTM44) showed efficacy and specificity in exchanging the coding sequence of a cancer target gene (Ct-SLCO1B3) with the suicide gene HSV1-thymidine kinase in a colorectal cancer model, thereby rendering tumor cells sensitive to the prodrug ganciclovir (GCV). In the present work, we expand the application of this approach, using the same RTM44 in aggressive skin cancer arising in the rare genetic skin disease recessive dystrophic epidermolysis bullosa (RDEB). Stable expression of RTM44, but not a splicing-deficient control (NC), in RDEB-SCC cells resulted in expression of the expected fusion product at the mRNA and protein level. Importantly, systemic GCV treatment of mice bearing RTM44-expressing cancer cells resulted in a significant reduction in tumor volume and weight compared with controls. Thus, our results demonstrate the applicability of RTM44-mediated targeting of the cancer gene Ct-SLCO1B3 in a different malignancy.


Assuntos
Epidermólise Bolhosa Distrófica/complicações , Epidermólise Bolhosa/complicações , Terapia Genética/métodos , Splicing de RNA , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/terapia , Trans-Splicing , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Epidermólise Bolhosa/genética , Epidermólise Bolhosa Distrófica/genética , Ganciclovir/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Loci Gênicos , Terapia Genética/efeitos adversos , Humanos , Camundongos , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055192

RESUMO

Despite a significant rise in the incidence of cutaneous squamous cell carcinoma (SCC) in recent years, most SCCs are well treatable. However, against the background of pre-existing risk factors such as immunosuppression upon organ transplantation, or conditions such as recessive dystrophic epidermolysis bullosa (RDEB), SCCs arise more frequently and follow a particularly aggressive course. Notably, such SCC types display molecular similarities, despite their differing etiologies. We leveraged the similarities in transcriptomes between tumors from organ transplant recipients and RDEB-patients, augmented with data from more common head and neck (HN)-SCCs, to identify drugs that can be repurposed to treat these SCCs. The in silico approach used is based on the assumption that SCC-derived transcriptome profiles reflect critical tumor pathways that, if reversed towards healthy tissue, will attenuate the malignant phenotype. We determined tumor-specific signatures based on differentially expressed genes, which were then used to mine drug-perturbation data. By leveraging recent efforts in the systematic profiling and cataloguing of thousands of small molecule compounds, we identified drugs including selumetinib that specifically target key molecules within the MEK signaling cascade, representing candidates with the potential to be effective in the treatment of these rare and aggressive SCCs.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/genética , Biologia Computacional/métodos , Epidermólise Bolhosa Distrófica/complicações , Transplante de Órgãos/efeitos adversos , Neoplasias Cutâneas/genética , Antineoplásicos/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/etiologia , Mineração de Dados , Reposicionamento de Medicamentos , Epidermólise Bolhosa Distrófica/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , RNA-Seq , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/etiologia
8.
Orphanet J Rare Dis ; 16(1): 473, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749770

RESUMO

BACKGROUND: Wound management is a critical factor when treating patients with the inherited skin fragility disease dystrophic epidermolysis bullosa (DEB). Due to genetic defects in structural proteins, skin and mucous epithelia are prone to blistering and chronic wounding upon minor trauma. Furthermore, these wounds are commonly associated with excessive pruritus and predispose to the development of life-threatening squamous cell carcinomas, underscoring the unmet need for new therapeutic options to improve wound healing in this patient cohort. Vitamin D3 is acknowledged to play an important role in wound healing by modulating different cellular processes that impact epidermal homeostasis and immune responses. In this study, we evaluate the safety and efficacy of low-dose calcipotriol, a vitamin D3 analogue, in promoting wound healing and reducing itch and pain in patients with DEB. METHODS: Eligible DEB patients, aged ≥ 6 years and with a known mutation in the COL7A1 gene, were recruited to a placebo-controlled, randomized, double blind, cross-over phase II monocentric clinical trial. Patients were required to have at least two wounds with a minimum size of 6 cm2 per wound. The primary objective was to evaluate efficacy of daily topical application of a 0.05 µg/g calcipotriol ointment in reducing wound size within a 4-week treatment regimen. Secondary objectives were to assess safety, as well as the impact of treatment on pruritus, pain, and bacterial wound colonization in these patients. RESULTS: Six patients completed the clinical trial and were included into the final analysis. Topical low-dose calcipotriol treatment led to a significant reduction in wound area at day 14 compared to placebo (88.4% vs. 65.5%, P < 0.05). Patients also reported a significant reduction of pruritus with calcipotriol ointment compared to placebo over the entire course of the treatment as shown by itch scores of 3.16 vs 4.83 (P < 0.05) and 1.83 vs 5.52 (P < 0.0001) at days 14 and 28, respectively. Treatment with low-dose calcipotriol did not affect serum calcium levels and improved the species richness of the wound microbiome, albeit with no statistical significance. CONCLUSIONS: Our results show that topical treatment with low-dose calcipotriol can accelerate wound closure and significantly reduces itch, and can be considered a safe and readily-available option to improve local wound care in DEB patients. Trial Registration EudraCT: 2016-001,967-35. Registered 28 June 2016, https://www.clinicaltrialsregister.eu/ctr-search/trial/2016-001967-35/AT.


Assuntos
Epidermólise Bolhosa Distrófica , Calcitriol/análogos & derivados , Colágeno Tipo VII , Método Duplo-Cego , Humanos , Pomadas , Dor/tratamento farmacológico , Dor/etiologia , Prurido/tratamento farmacológico , Prurido/etiologia , Cicatrização
9.
J Immunother Cancer ; 9(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34675067

RESUMO

Viral antigens are among the strongest elicitors of immune responses. A significant proportion of the human population already carries pre-existing immunity against several childhood viruses, which could potentially be leveraged to fight cancer. We sought to provide proof of concept in mouse models that a pre-existing measles virus (MeV) immunity can be redirected to inhibit tumor growth by directly forcing expression of cognate antigens in the tumor. To this end, we designed DNA vaccines against known MeV cytotoxic and helper T epitopes, and administered these intradermally to mice that were subsequently challenged with syngeneic squamous cancer cells engineered to either express the cognate antigens or not. Alternatively, established wild-type tumors in vaccinated animals were treated intratumorally with in vitro transcribed mRNA encoding the cognate epitopes. Vaccination generated MeV cytotoxic T lymphocyte (CTL) immunity in mice as demonstrated by enhanced interferon gamma production, antigen-specific T cell proliferation, and CTL-mediated specific killing of antigen-pulsed target cells. When challenged with syngeneic tumor cells engineered to express the cognate antigens, 77% of MeV-vaccinated mice rejected the tumor versus 21% in control cohorts. Antitumor responses were largely dependent on the presence of CD8+ cells. Significant protection was observed even when only 25% of the tumor bulk expressed cognate antigens. We therefore tested the strategy therapeutically, allowing tumors to develop in vaccinated mice before intratumoral injection with Viromer nanoparticles complexed with mRNA encoding the cognate antigens. Treatment significantly enhanced overall survival compared with controls, including complete tumor regression in 25% of mice. Our results indicate that redirecting pre-existing viral immunity to fight cancer is a viable alternative that could meaningfully complement current cancer immune therapies such as personalized cancer vaccines and checkpoint inhibitor blockade.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Carcinoma de Células Escamosas/imunologia , Memória Imunológica/imunologia , Vírus do Sarampo/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos
10.
Dermatol Ther (Heidelb) ; 11(4): 1175-1197, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34110606

RESUMO

New insights into molecular genetics and pathomechanisms in epidermolysis bullosa (EB), methodological and technological advances in molecular biology as well as designated funding initiatives and facilitated approval procedures for orphan drugs have boosted translational research perspectives for this devastating disease. This is echoed by the increasing number of clinical trials assessing innovative molecular therapies in the field of EB. Despite remarkable progress, gene-corrective modalities, aimed at sustained or permanent restoration of functional protein expression, still await broad clinical availability. This also reflects the methodological and technological shortcomings of current strategies, including the translatability of certain methodologies beyond preclinical models as well as the safe, specific, efficient, feasible, sustained and cost-effective delivery of therapeutic/corrective information to target cells. This review gives an updated overview on status, prospects, challenges and limitations of current gene-targeted therapies.

11.
Exp Dermatol ; 30(8): 1009-1022, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33600038

RESUMO

Continuous exposure of the skin to environmental, mechanical and chemical stress necessitates constant self-renewal of the epidermis to maintain its barrier function. This self-renewal ability is attributed to epidermal stem cells (EPSCs), which are long-lived, multipotent cells located in the basal layer of the epidermis. Epidermal homeostasis - coordinated proliferation and differentiation of EPSCs - relies on fine-tuned adaptations in gene expression which in turn are tightly associated with specific epigenetic signatures and metabolic requirements. In this review, we will briefly summarize basic concepts of EPSC biology and epigenetic regulation with relevance to epidermal homeostasis. We will highlight the intricate interplay between mitochondrial energy metabolism and epigenetic events - including miRNA-mediated mechanisms - and discuss how the loss of epigenetic regulation and epidermal homeostasis manifests in skin disease. Discussion of inherited epidermolysis bullosa (EB) and disorders of cornification will focus on evidence for epigenetic deregulation and failure in epidermal homeostasis, including stem cell exhaustion and signs of premature ageing. We reason that the epigenetic and metabolic component of epidermal homeostasis is significant and warrants close attention. Charting epigenetic and metabolic complexities also represents an important step in the development of future systemic interventions aimed at restoring epidermal homeostasis and ameliorating disease burden in severe skin conditions.


Assuntos
Epiderme/metabolismo , Epigênese Genética , Homeostase , Dermatopatias/genética , Diferenciação Celular/genética , Humanos , Dermatopatias/metabolismo
12.
Sci Rep ; 10(1): 15064, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934247

RESUMO

Impaired wound healing complicates a wide range of diseases and represents a major cost to healthcare systems. Here we describe the use of discarded wound dressings as a novel, cost effective, accessible, and non-invasive method of isolating viable human cells present at the site of skin wounds. By analyzing 133 discarded wound dressings from 51 patients with the inherited skin-blistering disease epidermolysis bullosa (EB), we show that large numbers of cells, often in excess of 100 million per day, continually infiltrate wound dressings. We show, that the method is able to differentiate chronic from acute wounds, identifying significant increases in granulocytes in chronic wounds, and we show that patients with the junctional form of EB have significantly more cells infiltrating their wounds compared with patients with recessive dystrophic EB. Finally, we identify subsets of granulocytes and T lymphocytes present in all wounds paving the way for single cell profiling of innate and adaptive immune cells with relevance to wound pathologies. In summary, our study delineates findings in EB that have potential relevance for all chronic wounds, and presents a method of cellular isolation that has wide reaching clinical application.


Assuntos
Bandagens , Separação Celular , Epidermólise Bolhosa , Granulócitos , Linfócitos T , Cicatrização , Doença Aguda , Adulto , Doença Crônica , Epidermólise Bolhosa/metabolismo , Epidermólise Bolhosa/patologia , Epidermólise Bolhosa/terapia , Granulócitos/metabolismo , Granulócitos/patologia , Humanos , Masculino , Linfócitos T/metabolismo , Linfócitos T/patologia
13.
Orphanet J Rare Dis ; 15(1): 182, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32650809

RESUMO

BACKGROUND: Epidermolysis bullosa (EB) comprises inherited mechanobullous dermatoses with considerable morbidity and mortality. While current treatments are symptomatic, a growing number of innovative therapeutic compounds are evaluated in clinical trials. Clinical research in rare diseases like EB, however, faces many challenges, including sample size requirements and recruitment failures. The objective of this study was to determine attitudes of EB patients towards clinical research and trial participation as well as the assessment of contextual motivating and discouraging factors in an effort to support patient-centered RD trial designing. METHODS: A 53-items questionnaire was handed over to EB patients (of all types and ages) in contact with the EB House Austria, a designated national center of expertise for EB care. Main categories included level of interest in and personal knowledge about clinical studies, pros/cons for participation and extent of individual expenses considered acceptable for participation in a clinical study. Descriptive subgroup analysis was calculated with SPSS 20.0 and Microsoft Excel. RESULTS: Thirty-six individuals (mean age 25.7 years), diagnosed for recessive dystrophic EB (36.1%), EB simplex (33.4%), junctional EB (8.3%), dominant dystrophic EB (2.8%) and acral peeling syndrome (2.8%) participated. Motivation for participation in and the desire to increase personal knowledge about clinical trials were (outmost) high in 57.2 and 66.7%, respectively. Altruism was the major motivating factor, followed by hope that alleviation of the own symptoms can be achieved. The greatest hurdle was travel distance, followed by concerns about possible adverse reactions. Patients diagnosed for severe subgroups (RDEB, JEB) were more impaired by the extent of scheduled invasive investigations and possible adverse reactions of the study medication. Patients with generally milder EB forms and older patients were accepting more frequent outpatient study visits, blood takes, skin biopsies and inpatient admissions in association with trial participation. CONCLUSIONS: This study provides additional indications to better determine and address attitudes towards clinical research among EB patients as well as guidance to improve clinical trial protocols for patient centricity.


Assuntos
Epidermólise Bolhosa Distrófica , Epidermólise Bolhosa , Adulto , Atitude , Áustria , Humanos , Pele
14.
Cell Commun Signal ; 18(1): 61, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32276641

RESUMO

BACKGROUND: Cutaneous squamous cell carcinomas (cSCC) are the primary cause of premature deaths in patients suffering from the rare skin-fragility disorder recessive dystrophic epidermolysis bullosa (RDEB), which is in marked contrast to the rarely metastasizing nature of these carcinomas in the general population. This remarkable difference is attributed to the frequent development of chronic wounds caused by impaired skin integrity. However, the specific molecular and cellular changes to malignancy, and whether there are common players in different types of aggressive cSCCs, remain relatively undefined. METHODS: MiRNA expression profiling was performed across various cell types isolated from skin and cSCCs. Microarray results were confirmed by qPCR and by an optimized in situ hybridization protocol. Functional impact of overexpression or knock-out of a dysregulated miRNA was assessed in migration and 3D-spheroid assays. Sample-matched transcriptome data was generated to support the identification of disease relevant miRNA targets. RESULTS: Several miRNAs were identified as dysregulated in cSCCs compared to control skin. These included the metastasis-linked miR-10b, which was significantly upregulated in primary cell cultures and in archival biopsies. At the functional level, overexpression of miR-10b conferred the stem cell-characteristic of 3D-spheroid formation capacity to keratinocytes. Analysis of miR-10b downstream effects identified a novel putative target of miR-10b, the actin- and tubulin cytoskeleton-associated protein DIAPH2. CONCLUSION: The discovery that miR-10b mediates an aspect of cancer stemness - that of enhanced tumor cell adhesion, known to facilitate metastatic colonization - provides an important avenue for future development of novel therapies targeting this metastasis-linked miRNA.


Assuntos
Carcinoma de Células Escamosas , Epidermólise Bolhosa Distrófica/patologia , MicroRNAs/fisiologia , Células-Tronco Neoplásicas , Neoplasias Cutâneas , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Células Cultivadas , Regulação Neoplásica da Expressão Gênica , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Invasividade Neoplásica , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Cultura Primária de Células , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
15.
Sci Rep ; 8(1): 13430, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194425

RESUMO

Recessive dystrophic epidermolysis bullosa (RDEB) patients suffer from chronic and repeatedly infected wounds predisposing them to the development of aggressive and life-threatening skin cancer in these areas. Vitamin D3 is an often neglected but critical factor for wound healing. Intact skin possesses the entire enzymatic machinery required to produce active 1-alpha,25-dihydroxyvitamin D3 (calcitriol), underscoring its significance to proper skin function. Injury enhances calcitriol production, inducing the expression of calcitriol target genes including the antimicrobial peptide cathelicidin (hCAP18), an essential component of the innate immune system and an important wound healing factor. We found significantly reduced hCAP18 expression in a subset of RDEB keratinocytes which could be restored by calcipotriol treatment. Reduced scratch closure in RDEB cell monolayers was enhanced up to 2-fold by calcipotriol treatment, and the secretome of calcipotriol-treated cells additionally showed increased antimicrobial activity. Calcipotriol exhibited anti-neoplastic effects, suppressing the clonogenicity and proliferation of RDEB tumor cells. The combined wound healing, anti-microbial, and anti-neoplastic effects indicate that calcipotriol may represent a vital therapeutic option for RDEB patients which we could demonstrate in a single-patient observation study.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Calcitriol/análogos & derivados , Fármacos Dermatológicos/farmacologia , Epidermólise Bolhosa/metabolismo , Queratinócitos/efeitos dos fármacos , Cicatrização , Idoso , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Calcitriol/farmacologia , Linhagem Celular , Células Cultivadas , Epidermólise Bolhosa/patologia , Humanos , Queratinócitos/metabolismo , Masculino , Catelicidinas
16.
Cancer Lett ; 433: 107-116, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29960051

RESUMO

Cancer-type organic anion transporting polypeptide 1B3 (Ct-OATP1B3) has been identified as a cancer-specific transcript in various solid cancers, including colorectal cancer. Given its excellent cancer-specific expression profile, we hypothesized that Ct-OATP1B3 could represent a promising target for cancer-specific expression of the suicide gene, herpes simplex virus 1 thymidine kinase (HSV-tk), via a spliceosome-mediated RNA trans-splicing (SMaRT) approach. SMaRT technology is used to recombine two RNA molecules to generate a chimeric transcript. In this study, we engineered an RNA trans-splicing molecule carrying a translation-defective HSV-tk sequence (RTM44), which was capable of inducing its own trans-splicing to the desired Ct-OATP1B3 pre-mRNA target. RTM44 expression in LS180 cells resulted in generation of Ct-OATP1B3/HSV-tk fusion mRNA. A functional translation start site contributed by the target pre-mRNA restored HSV-tk protein expression, rendering LS180 cells sensitive to ganciclovir treatment in vitro and in xenografted mice. The observed effects are ascribed to accurate and efficient trans-splicing, as they were absent in cells carrying a splicing-deficient mutant of RTM44. Collectively, our data highlights Ct-OATP1B3 as an ideal target for the HSV-tk SMaRT suicide system, which opens up new translational avenues for Ct-OATP1B3-targeted cancer therapy.


Assuntos
Neoplasias Colorretais/terapia , Ganciclovir/administração & dosagem , Terapia Genética/métodos , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/genética , Spliceossomos/genética , Timidina Quinase/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Terapia Combinada , Ganciclovir/farmacologia , Vetores Genéticos/administração & dosagem , Células HCT116 , Células HT29 , Humanos , Camundongos , Proteínas Recombinantes de Fusão/metabolismo , Simplexvirus/genética , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Timidina Quinase/metabolismo , Trans-Splicing , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Int J Mol Sci ; 19(3)2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29518954

RESUMO

In recent years, RNA trans-splicing has emerged as a suitable RNA editing tool for the specific replacement of mutated gene regions at the pre-mRNA level. Although the technology has been successfully applied for the restoration of protein function in various genetic diseases, a higher trans-splicing efficiency is still desired to facilitate its clinical application. Here, we describe a modified, easily applicable, fluorescence-based screening system for the generation and analysis of antisense molecules specifically capable of improving the RNA reprogramming efficiency of a selected KRT14-specific RNA trans-splicing molecule. Using this screening procedure, we identified several antisense RNAs and short rationally designed oligonucleotides, which are able to increase the trans-splicing efficiency. Thus, we assume that besides the RNA trans-splicing molecule, short antisense molecules can act as splicing modulators, thereby increasing the trans-splicing efficiency to a level that may be sufficient to overcome the effects of certain genetic predispositions, particularly those associated with dominantly inherited diseases.


Assuntos
Regulação da Expressão Gênica , Oligonucleotídeos Antissenso , Interferência de RNA , Splicing de RNA , Trans-Splicing , Linhagem Celular , Edição de Genes , Genes Reporter , Humanos , Sítios de Splice de RNA
20.
J Invest Dermatol ; 137(9): 1842-1849, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28549954

RESUMO

Recessive dystrophic epidermolysis bullosa (RDEB) is a rare monogenic blistering disorder caused by the lack of functional type VII collagen, leading to skin fragility and subsequent trauma-induced separation of the epidermis from the underlying dermis. A total of 46% of patients with RDEB harbor at least one premature termination codon (PTC) mutation in COL7A1, and previous studies have shown that aminoglycosides are able to overcome RDEB PTC mutations by inducing "read-through" and incorporation of an amino acid at the PTC site. However, aminoglycoside toxicity will likely prevent widespread clinical application. Here the FDA-approved drug amlexanox was tested for its ability to read-through PTC mutations in cells derived from patients with RDEB. Eight of 12 different PTC alleles responded to treatment and produced full length protein, in some cases more than 50% relative to normal controls. Read-through type VII collagen was readily detectable in cell culture media and also localized to the dermal-epidermal junction in organotypic skin culture. Amlexanox increased COL7A1 transcript and the phosphorylation of UPF-1, an RNA helicase associated with nonsense-mediated mRNA decay, suggesting that amlexanox inhibits nonsense-mediated mRNA decay in cells from patients with RDEB that respond to read-through treatment. This preclinical study demonstrates the potential of repurposing amlexanox for the treatment of patients with RDEB harboring PTC mutation in COL7A1.


Assuntos
Aminopiridinas/farmacologia , Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/tratamento farmacológico , Epidermólise Bolhosa Distrófica/genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Códon sem Sentido/genética , Epidermólise Bolhosa Distrófica/patologia , Feminino , Genes Recessivos , Humanos , Masculino , Terapia de Alvo Molecular/métodos , Mutação , Linhagem , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...